How shelterin solves the telomere end-protection problem.

نویسنده

  • T de Lange
چکیده

The symphony of the human genome concludes with a long Gregorian chant of TTAGGG repeats. This monotonous coda represents one of the most complex problems in chromosome biology: the question of how cells distinguish their natural chromosome ends from double-strand breaks elsewhere in the genome. McClintock's classic finding of chromosome breakage-fusion-bridge cycles, first reported by her at one of the early Cold Spring Harbor Laboratory Symposia (the ninth), served as a prelude to this question. The 75th Cold Spring Harbor Laboratory Symposium marks the completion of a series of mouse gene deletion experiments that revealed DNA-damage-response pathways that threaten chromosome ends and how the components of the telomeric shelterin complex prevent activation of these pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of shelterin reveals the telomere end-protection problem.

The telomere end-protection problem is defined by the aggregate of DNA damage signaling and repair pathways that require repression at telomeres. To define the end-protection problem, we removed the whole shelterin complex from mouse telomeres through conditional deletion of TRF1 and TRF2 in nonhomologous end-joining (NHEJ) deficient cells. The data reveal two DNA damage response pathways not p...

متن کامل

Mammalian Telomeres Resemble Fragile Sites and Require TRF1 for Efficient Replication

Telomeres protect chromosome ends through the interaction of telomeric repeats with shelterin, a protein complex that represses DNA damage signaling and DNA repair reactions. The telomeric repeats are maintained by telomerase, which solves the end replication problem. We report that the TTAGGG repeat arrays of mammalian telomeres pose a challenge to the DNA replication machinery, giving rise to...

متن کامل

Telomeric 3′ Overhangs Derive from Resection by Exo1 and Apollo and Fill-In by POT1b-Associated CST

A 3' overhang is critical for the protection and maintenance of mammalian telomeres, but its synthesis must be regulated to avoid excessive resection of the 5' end, which could cause telomere shortening. How this balance is achieved in mammals has not been resolved. Here, we determine the mechanism for 3' overhang synthesis in mouse cells by evaluating changes in telomeric overhangs throughout ...

متن کامل

Telomere-Internal Double-Strand Breaks Are Repaired by Homologous Recombination and PARP1/Lig3-Dependent End-Joining.

Shelterin protects chromosome ends from the DNA damage response. Although the mechanism of telomere protection has been studied extensively, the fate of double-strand breaks (DSBs) inside telomeres is not known. Here, we report that telomere-internal FokI-induced DSBs activate ATM kinase-dependent signaling in S-phase but are well tolerated and repaired efficiently. Homologous recombination con...

متن کامل

STN1 protects chromosome ends in Arabidopsis thaliana.

Telomeres shield the natural ends of chromosomes from nucleolytic attack, recognition as double-strand breaks, and inappropriate processing by DNA repair machinery. The trimeric Stn1/Ten1/Cdc13 complex is critical for chromosome end protection in Saccharomyces cerevisiae, while vertebrate telomeres are protected by shelterin, a complex of six proteins that does not include STN1 or TEN1. Recent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cold Spring Harbor symposia on quantitative biology

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2010